Indirectly Pumped 3.7 THz InGaAs/InAlAs Quantum-Cascade Lasers Grown by Metal-Organic Vapor-Phase Epitaxy
نویسندگان
چکیده
Device-performances of 3.7 THz indirect-pumping quantumcascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested. ©2012 Optical Society of America OCIS codes: (140.3070) Infrared and far-infrared lasers; (140.5965) Semiconductor lasers, quantum cascade; (230.5590) Quantum-well devices. References and links 1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). 2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007) (and references cited therein). 3. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008). 4. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009). 5. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012). 6. M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes interahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett. 97(22), 221114 (2010). 7. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). 8. M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008). 9. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (~450 K) of longwavelength (~15 μm), low-threshold-current density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010). 10. H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94(15), 151109 (2009). 11. A. Wacker, “Extraction-controlled quantum cascade lasers,” Appl. Phys. Lett. 97(8), 081105 (2010). 12. T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97(26), 261106 (2010). 13. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quntum cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys. 7(2), 166–171 (2011). 14. M. Yamanishi, K. Fujita, T. Kubis, N. Yu, T. Edamura, K. Tanaka, G. Klimeck, and F. Capasso, “Indirect pumping operation of THz InGaAs/InAlAs quantum-cascade-lasers,” paper presented at Eleventh International Conference on Intersubband Transitions in Quantum Wells, Badesi, Italy, 11–17, September 2011. #172845 $15.00 USD Received 18 Jul 2012; revised 10 Aug 2012; accepted 20 Aug 2012; published 23 Aug 2012 (C) 2012 OSA 27 August 2012 / Vol. 20, No. 18 / OPTICS EXPRESS 20647 15. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111(7), 073111 (2012). 16. S. Fathololoumi, E. Dupont, Z. R. Wasilewski, G. Aers, S. R. Laframboise, S. G. Razavipour, M. Lindskog, A. Wacker, D. Ban, and H. C. Liu, “Terahertz quantum cascade lasers based on phonon scattering assisted injection and extraction,” paper presented at Conference on Lasers and Electro-Optics (CLEO 2012), CTh4N.4, San Jose, CA, USA, 6–11, May 2012. 17. M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Temperature dependence of thermal conductivity and boundary resistance in THz quantum cascade lasers,” IEEE J. Quantum Electron. 14(2), 431–435 (2008). 18. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80(24), 245316 (2009). 19. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79(19), 195323 (2009). 20. T. C. Kubis, “Quantum Transport in semiconductor nanostructures,” in Selected Topics of Semiconductor Physics and Technology (Munich, Germany, 2009) vol. 114. 21. The energy-diffusion model has been recently proposed by one (MY) of the authors; M. Yamanishi, unpublished note (2012). 22. P. Harrison and R. W. Kelsall, “The relative importance of electron-electron and electron-phonon scattering in terahertz quantum cascade lasers,” Solid-State Electron. 42(7-8), 1449–1451 (1998). 23. M. S. Vitiello, R. C. Iotti, F. Rossi, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, Q. Hu, and G. Scamarcio, “Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers,” Appl. Phys. Lett. 100(9), 091101 (2012). 24. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86(11), 111115 (2005). 25. T. Liu, T. Kubis, Q. Jie Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on noequilibrium Green’s function analysis,” Appl. Phys. Lett. 100(12), 122110 (2012).
منابع مشابه
Periodic index separate confinement heterostructure InGaAs/AlGaAs quantum well lasers grown by temperature modulation molecular beam epitaxy
Articles you may be interested in Temperature modulation molecularbeam epitaxy and its application to the growth of periodic index separate confinement heterostructure InGaAs quantumwell lasers Periodic index separate confinement heterostructure InGaAs/AlGaAs multiple quantum well laser grown by organometallic vapor phase epitaxy Appl. Very low threshold single quantum well gradedindex separate...
متن کاملHigh-quality InP nanoneedles grown on silicon
Articles you may be interested in High-quality 1.3 m-wavelength GaInAsN/GaAs quantum wells grown by metalorganic vapor phase epitaxy on vicinal substrates Appl. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation High-detectivity InAs quantum-dot infrared photodetectors grown on InP by metal–organic chemical–vapor deposition Appl. High detectivit...
متن کاملTemperature Effect on THz Quantum Cascade Lasers
A simple semi-phenomenological model, which accurately predicts the dependence of thresholdcurrent for temperature of Resonant-phonon three well quantum cascade laser based on verticaltransitions is offered. We found that, the longitude optical phonon scattering of thermally excitedelectrons is the most important limiting factor for thermal performance of high frequency THz QCLs.In low frequenc...
متن کاملA periodic index separate confinement heterostructure quantum well laser
Articles you may be interested in Periodic index separate confinement heterostructure InGaAs/AlGaAs quantum well lasers grown by temperature modulation molecular beam epitaxy Appl. Temperature modulation molecularbeam epitaxy and its application to the growth of periodic index separate confinement heterostructure InGaAs quantumwell lasers Periodic index separate confinement heterostructure InGa...
متن کاملEffect of GaP strain compensation layers on rapid thermally annealed InGaAs/GaAs quantum dot infrared photodetectors grown by metal-organic chemical-vapor deposition
The effect of GaP strain compensation layers was investigated on ten-layer InGaAs/GaAs quantum dot infrared photodetectors QDIPs grown by metal-organic chemical-vapor deposition. Compared with the normal QDIP structure, the insertion of GaP has led to a narrowed spectral linewidth and slightly improved detector performance. A more significant influence of GaP was observed after the structure wa...
متن کامل